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ABSTRACT
Link prediction is a fundamental problem in social network
analysis. The key technique in unsupervised link prediction
is to find an appropriate similarity measure between nodes
of a network. A class of wildly used similarity measures
are based on random walk on graph. The traditional ran-
dom walk (TRW) considers the link structures by treating
all nodes in a network equivalently, and ignores the cen-
trality of nodes of a network. However, in many real net-
works, nodes of a network not only prefer to link to the
similar node, but also prefer to link to the central nodes
of the network. To address this issue, we use maximal en-
tropy random walk (MERW) for link prediction, which in-
corporates the centrality of nodes of the network. First, we
study certain important properties of MERW on graph G
by constructing an eigen-weighted graph G. We show that
the transition matrix and stationary distribution of MERW
on G are identical to the ones of TRW on G. Based on G,
we further give the maximal entropy graph Laplacians, and
show how to fast compute the hitting time and commute
time of MERW. Second, we propose four new graph ker-
nels and two similarity measures based on MERW for link
prediction. Finally, to exhibit the power of MERW in link
prediction, we compare 27 various link prediction methods
over 3 synthetic and 8 real networks. The results show that
our newly proposed MERW based methods outperform the
state-of-the-art method on most datasets.

Categories and Subject Descriptors
H.2.8 [Database management]: Database applications—
Data mining ; G.2.2 [Discrete mathematics]: Graph the-
ory—Graph algorithms

General Terms
Algorithm, Theory, Experimentation

Keywords
Maximal entropy random walk, graph kernels, similarity
measures, link prediction
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1. INTRODUCTION
Link prediction has been recognized as a fundamental

problem in social network analysis that aims to infer which
unobserved links will appear in the near future by a given
snapshot of a network [24]. Many problems in social com-
puting and data mining can be modeled as a link prediction
problem, such as the friends suggestion problem [32] in so-
cial network and the product recommendation problem [22]
in online shopping system.

Due to the broad applications, the link prediction problem
has been attracted much attention in research communities
[24, 11, 25]. The key challenges of the link prediction prob-
lem are owing to the sparsity and huge size of the networks.
Recently, a large number of approaches have been proposed
to address this issue. The methods can be classified into two
categories: supervised methods and unsupervised methods.
The supervised method for link prediction is identified as the
state-of-the-art method, which predict the unobserved links
by a binary classifier. However, the supervised methods,
such as the method proposed in [25], typically suffer from
the so-called class imbalance and feature selection problem
[2]. Moreover, most classifiers are based on the class distri-
bution of the training data, thus they could perform poorly
in some datasets that do not meet the prior assumptions.
Instead, the unsupervised methods work in an agnostic way,
thus they can naturally avoid this problem. In addition,
unsupervised methods do not need to decide which node
features and edge features to use for link prediction, thus
they also avoid the feature selection problem. In this paper,
we focus on unsupervised methods for link prediction.

The key point of the unsupervised methods for link pre-
diction is to find an appropriate similarity measure between
nodes of a graph. The widely applied methods to measure
similarities between nodes of a graph are based on random
walk on graph. We call this random walk the traditional
random walk (TRW) in this paper. In TRW, the transi-
tion probabilities from a start node to any of its neighbors
are equivalent, i.e., the reciprocal of the out-degree of the
start node. TRW considers the link structures by treating
all nodes of a graph as equivalent entities. In other words,
TRW ignores the centrality of nodes of a graph. However, in
the context of link prediction, we argue that the centrality
of the nodes play an important role. The reason is because
the nodes in a network not only prefer to link to the sim-
ilar nodes, but also prefer to link to the central nodes of
the network. Consequently, it is highly desirable to take the
centrality of nodes into consideration in the random walk
for link prediction task.
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To address the issue of node centrality, we resort to maxi-
mal entropy random walk (MERW), which incorporates the
centrality of nodes of a graph. This is because the transition
probabilities of MERW are proportional to the eigenvector
centrality of the nodes [5], which is wildly applied to mea-
sure the importance of the nodes over a graph. Unlike other
centrality measures based on degree, betweenness, and close-
ness [30], the eigenvector centrality measure is based on the
idea that the important of a node in a graph is larger if it has
many important neighbors. In other words, the eigenvector
centrality measure captures the structural context of a node.
In addition to capture the centrality of the nodes, MERW
has two nice properties. First, the same length paths be-
tween two given nodes have the same probabilities. Second,
the longer path between two given nodes has lower prob-
ability, which consists with the intuition for measuring the
similarity between nodes. As a result, we believe MERW can
probably perform much better than TRW in link prediction.

MERW has been studied recently. Burda et al. study the
MERW design [6]. Sinatra et al. present the evidence of
constructing approximate MERW to make it more practical
[34]. Devenne and Libert propose centrality measures for
complex networks based on MERW, but they do not sys-
tematically analyze the properties of MERW [9]. To the
best of our knowledge, we are the first group to investigate
a series of important properties of MERW in depth, and
systematically design a set of similarity measures based on
MERW for link prediction task. Our extensive experiments
exhibit the power of MERW in link prediction.

The main contributions of this paper are summarized as
follows.

• We propose a set of unsupervised MERW based meth-
ods for link prediction. In particular, we propose four
new graph kernels and two new similarity measures
based on MERW on graph. The new graph kernels and
similarity measures capture the centrality of nodes,
which is important in link prediction as the nodes in
real networks prefer to link to the central nodes.

• We establish a foundation to study MERW over an
unweighted and undirected graph by constructing an
eigen-weighted graph, whose edges are weighted by
the dominant eigenvalue and eigenvector of the adja-
cency matrix of the graph. Based on the construc-
tion of eigen-weighted graph, we study certain impor-
tant properties of MERW. We define three new graph
Laplacians based on MERW, and derive new formula
to compute hitting time and commute time of MERW
by utilizing pseudo-inverse of the combinatorial graph
Laplacian based on MERW. We show that the hitting
and commute time of MERW can be deemed as two
new dissimilarity measures between nodes of a graph.

• Extensive experiments confirm the power of MERW
in link prediction. Specifically, we compare 27 di-
verse link prediction methods over 11 real and syn-
thetic datasets. Our newly proposed MERW based
approach (NMEDK) outperforms the state-of-the-art
link prediction algorithm on most datasets.

The rest of the paper is organized as follows. We introduce
maximal entropy random walk (MERW) in comparison with
traditional random walk (TRW) in Section 2. We give a new
construction of eigen-weighted graph as basis to study the

important properties of MERW in Section 3. And then we
propose new graph kernels and similarity measures based
on MERW for link prediction in Section 4. We show the
extensive performance results on link prediction in Section 5,
and discuss related work in Section 6. Finally, We conclude
this work in Section 7.

2. MAXIMAL ENTROPY RANDOM WALK
In this section, we introduce traditional random walk fol-

lowed by discussions on maximal entropy random walk on
graphs. As mentioned in [9], maximal entropy random walk
cannot be applied to weighted graphs. We concentrate our-
selves on unweighted and undirected graphs in this paper.

Consider an unweighted and undirected graph G(V, E),
with a set of nodes V and a set of edges E, where the size
of nodes is n = |V |. Below, we use Vi to denote a node in
a graph and v to denote a vector representation. The graph
G can be represented as a symmetric adjacency matrix, A,
where Aij = 1 if nodes (Vi, Vj) ∈ E otherwise Aij = 0.

The degree of a node Vi ∈ G is denoted as di =
∑n

j=1 Aij .

Let D = diag(d1, d2, · · · , dn) be a diagonal matrix of node
degrees, a random walk on G can be defined using a tran-

sition matrix P = D−1A, with entries pij =
Aij

di
. We call it

traditional random walk (TRW) in order to distinguish from
the maximal entropy random walk discussed below. It is well
known that TRW on an undirected graph forms a reversible
Markov chain and reaches a unique stationary distribution
π [26]. The stationary distribution π satisfies the so-called
detailed balance equation πipij = πjpji , where πi = di∑n

k=1
dk

,

for 1 ≤ i ≤ n.

Maximal entropy random walk: We review the maxi-
mal entropy random walk (MERW) on graphs [6, 31, 33].
First, we introduce the entropy rate of random walk on
graph which is well known in information theory [8]. Con-
sider a path τ t

ij generated by the random walk with length
t from Vi to Vj . Suppose the path τ t

ij passes through the
nodes Vi, Vi1 , · · · , Vit−1 , Vj , then the probability p(τ t

ij) of the

path τ t
ij is defined as p(τ t

ij) = pii1pi1i2 · · · pit−2it−1pit−1j

The Shannon entropy [8] of all paths with length t gener-
ated by the walker is Et = −∑

∀τt
ij

p(τ t
ij) ln p(τ t

ij) and the

entropy rate of random walk is defined as η = limt→∞ Et/t.
A well known result in information theory [8] indicates

that the maximal entropy rate of random walk on a graph
can be computed from the transition matrix P and the sta-
tionary distribution π as follows.

η = −
∑

i

πi

∑
j

pij ln pij (1)

On the other hand, the maximal entropy rate of random
walk on a graph is bounded by ln λ [31] (In [9, 33], this
quantity is called topological entropy of a graph.), where λ
is the largest eigenvalue (or called dominant eigenvalue) of
the adjacency matrix A. As shown in [6], this quantity can
be obtained by the following asymptotic value.

ηmax = lim
t→∞

ln
∑

i,j (At)ij

t
= ln λ (2)

Unlike TRW, MERW aims to maximize the entropy rate of a
walk by carefully constructing a probabilistic transition ma-
trix as follows. Let v = (v1, v2, · · · , vn) be the normalized
eigenvector (

∑n
i=1 v2

i
= 1) with respect to the largest eigen-
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value λ of the adjacency matrix A. Obviously, vi is positive
as guaranteed by Forbenius-Perron theorem [20]. Then, the
transition probability of MERW becomes

pij =
Aijvj

λvi
(3)

We can reformulate it into a matrix form as follows.

Pv =
Dv

−1ADv

λ
(4)

where Dv = diag(v1 , v2 , · · · , vn) denotes the diagonal ma-
trix with respect to v. The stationary distribution of MERW
becomes π∗ = (v2

1 , v2
2 , · · · , v2

n ) [6]. Together with π∗ and
pij , it can be easily confirmed that MERW maximizes the
entropy rate. In addition, all paths τ t

ij with length t between
nodes Vi and Vj have the same probability p(τ t

ij) =
vj

λtvi
,

which is independent of the intermediate nodes in the path.
Obviously, the longer path has the smaller probability.

3. IMPORTANT PROPERTIES OF MERW
In this section, we identify certain useful properties of

MERW which are crucial to construct MERW based similar-
ity measures on graph. First, we propose an eigen-weighted
graph as a basic tool for studying important properties of
MERW. Then, we define three new graph Laplacians based
on MERW, and show that the hitting time and commute
time of MERW can be efficiently computed by the new graph
Laplacian.

3.1 Eigen(vector)-weighted graph
TRW has been well studied, but MERW is not yet. In

order to investigate the properties of MERW, we propose
a new method to construct a family of eigenvector-weighted
graphs G from the original unweighted and undirected graph
G. With this construction, we show that the transition ma-
trix and stationary distribution of MERW on G are identi-
cal to those of TRW on G, respectively. We further define a
special eigenvector-weighted graph, called an eigen-weighted
graph G. Based on the special graph, we simplify our investi-
gation of MERW on G by analyzing and deriving from TRW
on G.

Definition 3.1: (Eigenvector-weighted graph) Given
an unweighted and undirected graph G(V, E), its adjacency
matrix A, the largest eigenvalue λ of A, and the normalized
eigenvector v = (v1, v2, · · · , vn) w.r.t. λ, an eigenvector-
weighted graph is G(V, E,W), where W is an eigenvector-
weighting set, and is constructed by Wij = γvivj , if edge
(Vi, Vj) ∈ E, where γ is a real parameter. 2

We give two theorems regarding relationships between
MERW on G and TRW on G.

Theorem 3.1: The transition matrix of MERW on graph G
is identical to the transition matrix of TRW on the eigenvector-
weighted graph G. 2

Proof Sketch: Consider TRW on eigenvector-weighted
graph G. Deriving from the transition probability on an
edge (Vi, Vj), we have

pij =
Aijγvivj∑
j Aijγvivj

=
Aijvj∑
j Aijvj

=
Aijvj

λvi
,

that is identical to Eq. (3). Hence, the transition matrix of
MERW on G is the same as that of TRW on G. 2
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Figure 1: An Example: G (left) and G (right)

Theorem 3.2: The stationary distribution of MERW on
graph G is identical to the stationary distribution of TRW
on the eigenvetor-weighted graph G. 2

Proof Sketch: Consider TRW on a n-node eigenvetor-
weighted graph G. Let the stationary distribution of TRW
be π = (π1, π2, · · · , πn), we have

πi =

∑
j Wij∑

i,j Wij
=

∑
j Aijγvivj∑

i,j Aijγvivj
=

v2
i∑
i v2

i

= v2
i

where i = 1, 2, · · · , n. That is identical to the stationary
distribution of MERW on graph G. 2

In order to define maximal entropy graph Laplacians and
to deduce important properties of MERW, we define an
eigen-weighted graph which uses the dominant eigenvalue
and eigenvector as the weighting set, by letting γ = 1/λ.

Definition 3.2: (Eigen-weighted graph) Given an un-
weighted and undirected graph G(V, E), its adjacency ma-
trix A, the largest eigenvalue λ of A, and the normalized
eigenvector v = (v1, v2, · · · , vn) w.r.t. λ, an eigen-weighted
graph is defined as G(V, E, W ), where W is an eigen-weighting
set, and is constructed by Wij =

vivj

λ
, if edge (Vi, Vj) ∈ E.

2

It is worth noting that for any connected, non-bipartite,
undirected and unweighted graph G, there exists only one
eigen-weighted graph G corresponding to G, based on the
uniqueness properties of the dominant eigenvalue and eigen-
vector of the adjacency matrix of G. On the other hand,
TRW on a general weighted graph typically cannot be con-
verted to MERW on the corresponding unweighted graph.
This is because it is almost impossible to decompose the
weight of a given edge of the weighted graph into the product
form of two corresponding elements of the dominant eigen-
vector. Note that both Theorem 3.1 and Theorem 3.2 hold
for eigen-weighted graphs, because the eigen-weighted graph
is a special eigenvector-weighted graph.

Fig. 1 shows an example. For the given original graph G
(left), the largest value (λ) of A and the normalized eigen-
vector v w.r.t. λ can be obtained using the power iteration
algorithm. Here, λ = 2.3028, and v = (0.2454, 0.5651, 0.4908,
0.5651, 0.2454). The resulting eigen-weighted graph G is
shown on the right.

3.2 Graph Laplacians
Graph Laplacian in spectral graph theory [7] is widely

used to analyze important parameters of random walk on
graph. Here we first study the graph Laplacians on the
eigen-weighted graph, and then we propose three new graph
Laplacians on the original un-weighted and undirected graph
based on MERW.

Laplacian of eigen(vector)-weighted graph: We in-
troduce two graph Laplacians. The first graph Laplacian,
which we call general graph Laplacian, is characterized by
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the transition matrix and stationary distribution of the walk
[7, 4]. Let π be the stationary distribution of the walk, P be
the transition matrix, and Π = diag(π), the general graph
Laplacian L can be defined as

L = Π(I−P) (5)

where I is an identity matrix. In eigenvector-weighted graph,
we have

L = Dv
2 − DvADv

λ
(6)

where Dv = diag(v1, v2, · · · , vn) and A is the adjacency
matrix of G. Together with Theorem 3.1 and Theorem 3.2,
we can conclude that the Laplacian matrix L defined on
the eigenvector-weighted graph G is identical to the general
graph Laplacian defined on the original G based on MERW.
The second is the combinatorial graph Laplacian [7]. For
any weighted graph, the combinatorial graph Laplacian L is
defined by

L = D−W

where W is the adjacency matrix of the weighted graph and
D is a diagonal matrix of row sums of W.

It is easy to verify that, for eigen-weighted graphs, the
combinatorial graph Laplacian L is identical to the general
graph Laplacian L. In effect, the eigen-weighted graph is
only the case that satisfies L = L.

Maximal entropy graph Laplacians: Based on the gen-
eral graph Laplacian (Eq. (6)) and the combinatorial graph
Laplacian on the eigen-weighted graph, we introduce three
new graph Laplacians based on MERW.

Given an unweighted and undirected graph G, its adja-
cency matrix A, the largest eigenvalue λ, and the normal-
ized eigenvector v = (v1, v2, · · · , vn) w.r.t λ. Let Dv =
diag(v1, v2, · · · , vn). The maximal entropy combinatorial
Laplacian (MECL) of G is defined as follows.

L = Dv
2 − DvADv

λ
(7)

L is equal to the combinatorial graph Laplacian defined
on the eigen-weighted graph, thus we refer L to maximal
entropy combinatorial Laplacian (MECL). Similar to the
normalized Laplacians based on TRW, we can define the
normalized maximal entropy Laplacians based on MERW,
namely, the symmetric normalized maximal entropy Lapla-
cian Lsym, and the asymmetric normalized maximal entropy
Laplacian Lrw as follows.

Lsym = Dv
−1LDv

−1 = I−A/λ (8)

Lrw = Dv
−2L = I−Dv

−1ADv/λ (9)

3.3 Hitting time and commute time of MERW
Hitting time and commute time are two important param-

eters of TRW. The hitting time h(i, j) defines the average
number of steps that start from node Vi and first arrive at
node Vj in TRW [26]. It can be computed in an iterative
fashion as follows [10, 26].

h(i, j) =





1 +
n∑

k=1

pikh(k , j ), if i 6= j

0, otherwise
(10)

The commute time c(i, j) is defined as the average number
of steps that the walker starts at node Vi, reaching node

Vj(i 6= j) for the first time, and then goes back to node Vi

such that c(i, j) = h(i, j) + h(j, i). As shown in [10, 16], the
commute time of TRW on an undirected graph can be used
as a distance measure.

It is well known that the hitting time and commute time
of TRW can be computed by the pseudo-inverse of the graph
Laplacian. We show that the hitting and commute time of
MERW can also be computed by the pseudo-inverse of the
MECL. Assume the Moore-Penrose pseudo-inverse [10] of
MECL is denoted by L+, with entries L+

ij . We have Theo-
rem 3.3.

Theorem 3.3:

h(i, j) =

n∑

k=1

(L+
ik − L+

ij − L+
jk + L+

jj)v
2
k (11)

c(i, j) = L+
ii + L+

jj − 2L+
ij (12)

2

We give the proof in Appendix A. It is not hard to verify
that the hitting and commute time of MERW on an un-
weighted and undirected graph is equal to that of TRW
on the corresponding eigen-weighted graph. Based on the
construction of eigen-weighted graph, the commute time of
MERW on graph G is also a distance measure.

4. NEW KERNELS AND SIMILARITY MEA-
SURES

The key technique in unsupervised link prediction is to
define a similarity measure between nodes of a graph. In this
section, we give a class of new graph kernels and similarity
measures based on MERW for link prediction.

4.1 Maximal entropy graph kernels
In TRW on graph, the pseudo-inverse of the Laplacian ma-

trix is called commute time kernel [10]. We showed that the
commute time of MERW can be computed by the pseudo-
inverse of the MECL. Likewise, we can define a new maximal
entropy commute time kernel based on MERW. The maxi-
mal entropy commute time kernel (CK ) and its normalized
kernel (CKN ) are given below.

CK = L+ (13)

CKN = L+
sym (14)

Since the pseudo-inverse of L (Eq. (7)) and Lsym (Eq. (8))
are positive semidefinite, CK and CKN are valid kernels.

As shown in [17], the heat diffusion kernel is closely related
to TRW on graph. The heat diffusion kernel is constructed
based on heat equation and can be defined as matrix ex-
ponentiation. Motivated by this, we define new maximal
entropy heat diffusion kernels. The maximal entropy heat
diffusion kernel DK and the normalized maximal entropy
heat diffusion kernel DKN are given below.

DK = exp(−αL) (15)

DKN = exp(−αLsym) (16)

where α is a positive real parameter.
The regularized Laplacian kernel of TRW on graph was

first presented in [35] based on the regularization operators.
By regularization on MECL, we define new maximal entropy
regularized Laplacian kernels of MERW on graph. The max-
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imal entropy regularized Laplacian kernel RK and the nor-
malized counterpart RKN are given below.

RK = (I + αL)−1 (17)

RKN = (I + αLsym)−1 (18)

where α is a positive real parameter, and I is an identity
matrix.

With the help of the eigen-weighted graph, we can also
define new maximal entropy Neumann kernels on the eigen-
weighted graph G. Firstly, we give a theorem.

Theorem 4.1: Given a graph G, and its adjacency matrix
A, let Dv be a diagonal matrix defined in Eq. (7), then
the matrix I−αDvADv/λ is a positive definite matrix, for
α ∈ (0, 1). 2

Proof Sketch: Obviously, the matrix I − αDvADv/λ is
symmetric. Let ρ be the spectral radius of matrix DvADv/λ,
then we have

ρ ≤ ||DvADv

λ
||∞ = max

i
{
∑

j

Aijvivj/λ} = max
i
{v2

i } ≤ 1

First, because v is a normalized vector, the last inequality
holds. Second, because α ∈ (0, 1), all eigenvalues of matrix
I− αDvADv/λ is positive. This completes the proof. 2

Based on the theorem, a maximal entropy Neumann ker-
nel NK and the corresponding normalized version NKN can
be defined as follows.

NK = (I− αDvADv/λ)−1 (19)

NKN = (I− αA/λ)−1 (20)

where α ∈ (0, 1) is a real parameter.
The normalized maximal entropy Neumann kernel NKN

is closely related to the Katz index when it is applied for link
prediction [15]. In addition, it is not hard to show that the
normalized maximal entropy regularized Laplacian kernel is
equivalent to the maximal entropy Neumann kernel with a
different real parameter, i.e., RKN = (1− β)(I− βA/λ)−1,
where β = α/(1 + α).

4.2 Maximal entropy inverse P-distance
In [12], inverse P-distance (PD) is defined to compute the

proximity between nodes, Vi and Vj , on a graph.

PD(i, j) =
∑

τij :Vi;Vj

p(τij)α
l(τij) (21)

Here, the summation is taken over all paths τij that start at
node Vi and ends at node Vj , where l(τij) denotes the length
of path τij . PD(i, j) measures distances inversely: it is larger
for nodes Vi “closer” to Vj . In MERW, all paths with equal
length have the same probabilities. The maximal entropy
inverse P-distance can be written in a more compact form.

PD(i, j) =

∞∑

l=1

(
α

λ
)l vj

vi
(Al)ij (22)

Here, Eq. (22) can be put in a matrix form as follows.

PD =
αA

λ
Dv

−1(I− αA

λ
)−1Dv (23)

By replacing αl by αl

l!
in Eq. (22), we have a matrix expo-

nentiation, denoted as PD
′ as follows.

PD
′ =

αA

λ
Dv

−1 exp(
αA

λ
)Dv (24)

4.3 Maximal entropy SimRank
The original SimRank is based on the idea that two nodes

are similar if they are joined to similar neighbors [13]. The
SimRank is closely related to the random walk on a product
graph. Motivated by this, we propose a new SimRank based
maximal entropy random walk on graph, denoted as S(x, y)
for two nodes Vx and Vy in Eq. (25).

S(x, y) =





αλ−2vxvy

∑
a∈N(x)

∑
b∈N(y)

S(a,b)
vavb

, if x 6= y

1, if x = y

(25)
where α ∈ (0, 1) and N(x) denotes to the neighbor node set
of node Vx. We call Eq. (25) the maximal entropy SimRank
equation. The existence and uniqueness of the solution to
the maximal entropy SimRank equation is guaranteed by
the following theorem.

Theorem 4.2: The maximal entropy SimRank equation de-
fined in Eq. (25) has a unique solution. 2

Proof Sketch: This can be proved in the similar as to
prove the original SimRank equation in [13]. 2

The maximal entropy SimRank can be computed in an
iterative fashion as follows.

Rk+1(x, y) = αλ−2vxvy

∑

a∈N(x)

∑

b∈N(y)

Rk(a, b)

vavb
(26)

where the initial point is defined as R0(x, y) = 0 if x 6= y,
otherwise R0(x, y) = 1. Since the maximal entropy Sim-
Rank equation has an unique solution, Eq. (26) has the same
form as Eq. (25), the iterative computation can be reached
by a fixed-point. More formally, S(x, y) = lim

k→∞
Rk(x, y).

Note that SimRank can be computed by the so-called
“expected-f meeting distance” of two surfers in a random
surfer-pairs model [13]. The random surfer pairs model is
identical to a random surfer on a so-called product graph
induced by the original graph. Each node in the product
graph is a node pair of the original graph. Thus, two random
surfers starting at nodes Vx and Vy, respectively, meeting at
Vu, is equal to the random surfer starting from node (Vx, Vy)
and ending at node (Vu, Vu) in the product graph. The max-
imal entropy SimRank can also be modeled by a maximal
entropy random surfer-pairs model. Below, we first give a
maximal entropy expected-f meeting distance and then es-
tablish the equivalent relationship between it and maximal
entropy SimRank. The maximal entropy expected-f meeting
distance dist(x , y) between two nodes Vx and Vy is defined
as

dist(x, y) =
∑

τ :(x,y);(u,u)

p(τ)αl(τ) (27)

where τ denotes a path generated by the maximal entropy
random surfer starting at node (x, y) and ending at node
(u, u) in the product graph. p(τ) denotes the probability of
path τ , and l(τ) is the length of the τ . Based on Eq. (27),
we have the following theorem.

Theorem 4.3: The maximal entropy SimRank between a
node pair (x, y) is their maximal entropy expected-f meeting
distance traveling back-edges. 2

Proof Sketch: We prove it by splitting the path τ into
two parts: the first step (a, b) ; (x, y), where a ∈ N(x), b ∈
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N(y); and the remaining path τ ′.

dist(x, y) =
∑

τ :(u,u);(x,y)

p(τ)αl(τ)

=
∑

a∈N(x)

∑
b∈N(y)

∑
τ ′:(u,u);(a,b)

vxvy

λ2vavb
p(τ ′)αl(τ ′)+1

=
αvxvy

λ2

∑
a∈N(x)

∑
b∈N(y)

∑
τ ′:(u,u);(a,b)

p(τ ′)αl(τ′)+1

vavb

=
αvxvy

λ2

∑
a∈N(x)

∑
b∈N(y)

dist(a,b)
vavb

(28)
Note that l(τ) = l(τ ′) + 1 and p(τ) =

vxvy

λ2vavb
p(τ ′). Since

dist(x, y) is equal to the maximal entropy SimRank (Eq. (25)),
the maximal entropy expected-f meeting distance between
two nodes is equivalent to their maximal entropy SimRank.

2

5. EXPERIMENTS
In this section, we evaluate the effectiveness of MERW

based similarity measures for link prediction. In the fol-
lowing, we first introduce the experimental setup, and then
report our results.

5.1 Experimental setup
Datasets: We conduct our experiments on 3 synthetic and
8 real networks. Specifically, for synthetic networks, we
generate three networks with 1,000 nodes using three clas-
sic random graph generators: ER (Erods-Renyi random
graph [30]), BA (Barabasi-Albert random graph (scale free
graph) [3]), and SW (small word random graph [30]). For
real networks, we test the proposed methods on 8 represen-
tative datasets, which are widely used for link prediction
both in computer science community and physics commu-
nity. Specifically, the first five are USAir (network of US
air transportation system), C.elegans (neural network of
the nematode worm [36]), Yeast (protein-protein interac-
tion network [14]), Power (network of power grid of the
western US [36]), and NetScience (collaboration network
of researchers [29], who work on complex network theory).
The second three are collaboration networks collected form
Arxiv e-print archive [21], including three different areas of
physics. In particular, they are Gr-Qc (General Relativity
and Quantum Cosmology), Hep-ph (High Energy Physics-
Phenomenology), and Hep-Th (High Energy Physics-Theory).
Table 1 shows the numbers of nodes and edges of the net-
works as well as the numbers of nodes and edges of the giant
components (GC) of the networks.

Networks Nodes Edges Nodes of GC Edges of GC

ER 1000 9997 1000 9997
BA 1000 11964 1000 11964
SW 1000 1995 1000 1995
USAir 332 2126 332 2126
C.elegans 453 2298 453 2298
Yeast 1870 4480 1458 1993
Power 4941 6594 4941 6594
NetScience 1461 2742 397 914
Gr-Qc 5242 14490 4158 13428
Hep-ph 12008 118505 11204 117649
Hep-Th 9877 25748 8638 24806

Table 1: Datasets statistics

Evaluation metrics: We employ two widely used metrics
to evaluate the link prediction methods: the Area under

the ROC curve (AUC)[25, 27] and precision [27, 2]. The
first metric evaluates the overall ranking yielded by the al-
gorithms, while the second metric focuses on top-K predic-
tive results. In our experiments, the AUC is computed by
a standard method described in [27]. A larger AUC value
indicates a better link prediction performance. The preci-
sion is defined as the ratio of relevant number of items over
all selected items using k

K
. Here, we set K = 30, and k is

the number of links that successfully predicted by the al-
gorithms. Obviously, the larger precision means the higher
predictive accuracy.

Baselines: We compare 27 various link prediction algo-
rithms involving 11 MERW based methods, 10 TRW based
methods, common neighbor, Adamic/Ada [1], supervised
link prediction method [25], and supervised random walk
[2]. In particular, the similarity measures we tested in-
clude: Commute time of TRW (CTT), Commute time of
MERW (CTME), Commute time kernel (CK), Maximal en-
tropy commute time kernel (MECK), Normalized commute
time kernel (NCK), Normalized maximal entropy commute
time kernel (NMECK), Heat diffusion kernel (DK), Maximal
entropy heat diffusion kernel (MEDK), Normalized heat dif-
fusion kernel (NDK), Normalized maximal entropy heat dif-
fusion kernel (NMEDK), Regularized Laplacian kernel (RK),
Maximal entropy regularized Laplacian kernel (MERK), Nor-
malized regularized Laplacian kernel (NRK), Normalized
maximal entropy regularized Laplacian kernel (NMERK),
Neumann kernel (NK), Maximal entropy Neumann kernel
(MENK), Normalized Neumann kernel (NNK), Normalized
maximal entropy Neumann kernel (NMENK), Inverse P-
distance (PD), Maximal entropy inverse P-distance (MEPD),
Inverse P-distance with matrix exponentiation (PDM), Max-
imal entropy inverse P-distance with matrix exponentiation
(MEPDM), SimRank (SR), Maximal entropy SimRank (MESR),
and Common Neighbor (CN), Adamic/Adar (AA), super-
vised link prediction method (HPLP+), and supervised ran-
dom walk (SRW).

Link prediction methodology: For each dataset given
in Table 1, first, we extract the giant component of the
graph, and randomly split the edges into a training set and
a test set. The test set contains 10% of all edges in the
giant component. In particular, we conduct 10 times ran-
dom partitions of training and test sets on the datasets, and
the link prediction results are the average over this parti-
tions. Second, we perform the link prediction algorithms on
the datasets. Specifically, we consider two cases: the unsu-
pervised methods and supervised methods. For the unsu-
pervised algorithms, which involve MERW and TRW based
method, CN, and AA, we compute the similarity matrix on
the training set using the similarity measures described in
the previous sections. Then, we use the similarity matrix to
calculate the predictions for the edges in the test set. For
the supervised algorithms, including HPLP+ and SRW, we
perform the corresponding learning algorithms on the train-
ing set, and then compute predictions on the test set. It is
worth mentioning that we implement a naive Bayes classifer
using the full feature set (HPLP+) defined in [25] for super-
vised link prediction, as it obtains the best performance in
[25]. Finally, we compare the link prediction performance
using the evaluation metrics described above.

Parameter settings: In MERW or TRW based similarity
measures, there is only one parameter: the damping factor
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α. We set α = 0.5, as it is not very sensitive in our experi-
ments. In addition, we set all parameters of other baselines
as the same as their original papers respectively.

Experimental environment: All experiments are con-
ducted on the Linux workstation with 2xQuad-Core Intel
Xeon 3.06 GHz CPU, 48 Gb memory, and running CentOS
5.5. All the algorithms are implemented by MATLAB 2009
and Visual C++ 6.0.

5.2 Experimental results
Table 2 and Table 3 show the results of 27 various link

prediction algorithms on 11 datasets under AUC and preci-
sion metric respectively. We can clearly see that the MERW
based link prediction methods achieve better predictions
than all other unsupervised methods under both AUC and
precision metric. Moreover, on most datsets, the MERW
based methods perform better than supervised methods.
Generally, the normalized maximal entropy graph kernels
outperform the non-normalized ones. And the normalized
maximal entropy diffusion kernel achieves the best perfor-
mance among all the MERW based methods. We show the
detail analysis as follows.

Commute time kernels: By comparing commute time of
TRW (CTT), commute time of MERW (CTME, Eq. (12)),
commute time kernel (CK), maximal entropy commute time
kernel (MECK, Eq. (13)) and their corresponding normal-
ized kernels (Eq. (14)), we observe that the normalized max-
imal entropy commute time kernel outperforms the others
on most datasets. We also see that both CTT and CTME
perform poorly. This consists with a recent result reported
in [28], in which the authors claim that the commute time
distance converges to a meaningless distance measure, thus
it results in poor precision for link prediction.

Heat diffusion/regularized Laplacian kernels/Neumann
kernels: Comparing among heat diffusion kernel (DK), max-
imal entropy heat diffusion kernel (MEDK, Eq. (15)), and
their normalized counterparts (NMEDK, Eq. (16)), the re-
sults show that NMEDK achieves significant improvement
over DK, MEDK, and NDK. For instance, in Yeast dataset
(column 7, row 8-11), NMEDK achieves near-optimal AUC,
and obtain 67.6%, 517.4%, and 135.9% relative improvement
on DK, MEDK, and NDK in terms of precision metric, re-
spectively. The similar comparisons can also be observed
between the regularized Laplacian kernels and maximal en-
tropy regularized Laplacian kernels (Eq. (17) and Eq. (18)),
and also between the Neumann kernels and maximal en-
tropy Neumann kernels. In addition, it is worth mention-
ing that the normalized maximal entropy heat diffusion,
normalized maximal entropy regularized Laplacian kernel,
and the normalized maximal entropy Neumann kernel get
the similar performance on most datasets, and they outper-
form the corresponding non-normalized kernels. The AUC
of the maximal entropy graph kernels achieve near-optimal
value on most datasets. Moreover, the precision of these
graph kernels is close to 1 on USAir, C.elegances, Yeast,
and NetScience, as well as the three synthetic graphs. This
results indicate that the MERW based similarity measures
can probably capture the nature of link formation process
of these networks, thus the link predictive precision is close
to 1.

Inverse P-distance and SimRank: Among inverse P-
distance (PD), inverse P-distance with matrix exponenti-

ation (PDM), SimRank (SR), and their maximal entropy
counterparts (Eq. (23), Eq. (24), and Eq. (25)), the maximal
entropy P-distances with matrix exponentiation (MEPDM)
outperforms others in terms of both AUC and precision.
Over all the datasets, the maximal entropy P-distances with
matrix exponentiation (MEPDM) improves AUC over PD,
MEPD, and PDM by 11.8%, 1%, 16.6% on average, respec-
tively. And also it boosts precision on PD, MEPD, and
PDM by 52.8%, 0.7%, 362.6% on average respectively. Sim-
Rank measures perform poorly than the graph kernels. More
worse, the time complexity of SimRank measures is O(n4),
thus we cannot obtain all the experimental results.

Comparison with supervised methods: Here we com-
pare the MEPDM with supervised link prediction (HPLP+),
and supervised random walk (SRW), as MEPDM achieves
the best performance over the unsupervised methods in our
experiments. We can clearly see that the performance of
MEPDM is better than supervised methods (HPLP+ and
SRW) over USAir, C.ele, Yeast, NetScience, GrQc, HepTh,
and three synthetic networks under both AUC and pre-
cision metric. Moreover, on the rest datasets, MEPDM
achieves competitive performance with supervised methods.
It is worth mentioning that the SRW slightly outperforms
HPLP+ under both AUC and precision metric on most
datasets. The AUC of MEPDM, HPLP+, and SRW falls
into the range (0.72, 0.99), and the precision of this algo-
rithms is roughly between (0.12, 0.96). This results suggest
that the MEPDM, as supervised methods do, exhibits very
good performance in link prediction.

To summarize, the experimental results highlight the power
of MERW in link prediction. Also, the results empirically
confirm that the centrality of nodes is very important in
link prediction. Since the MERW based methods inherently
capture the centrality of nodes, they can yield much better
performance than those methods that do not consider the
centrality of nodes in link prediction. Indeed, as observed in
many real networks [3, 30], the link formation typically con-
sists with a preferential attachment process. That is to say,
the nodes in the network tend to link to the central nodes,
which results in a so-called“rich-get-richer”phenomenon. In
effect, the MERW implicitly incorporates this phenomenon
into the random walk process. This is because the transition
probability in each step of MERW refers to the eigenvec-
tor centrality of the nodes, thus it makes the walk greedily
moves to the important nodes. Besides, as opposed to the
supervised methods, the MERW based methods work in a
agnostic manner, thus they can naturally avoid the class
distribution and feature selection problem [2].

6. RELATED WORK
Link prediction and similarity measure on graph: Af-
ter the seminal work by Liben-Nowell and Kleinberg [24], the
link prediction problem has attracted considerable attention
in recent years both from computer science and physics com-
munity [27, 11, 19, 25, 18, 2]. The existing link prediction
approaches can be classified into two categories: unsuper-
vised and supervised methods. Most unsupervised link pre-
diction algorithms are based on the similarity measure be-
tween the nodes of a graph. A recent survey can be found
in [27]. Below, we focus on the random walk based similar-
ity measures. In [13], SimRank is proposed, based on the
idea that two nodes are similar if they are joined to sim-
ilar neighbor nodes. The complexity of this algorithm is
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SM ER BA SW USAir C.ele Yeast Power NetSci GrQc HepPh HepTh

CTT 0.710 0.750 0.791 0.847 0.784 0.709 0.713 0.917 0.520 0.523 0.525
CTME 0.720 0.746 0.745 0.855 0.798 0.501 0.501 0.866 0.556 0.645 0.534
CK 0.805 0.883 0.804 0.856 0.809 0.715 0.501 0.799 0.513 0.501 0.513
MECK 0.940 0.981 0.845 0.936 0.856 0.757 0.501 0.975 0.517 0.501 0.503
NCK 0.502 0.501 0.501 0.708 0.706 0.501 0.501 0.501 0.503 0.508 0.501
NMECK 0.903 0.983 0.982 0.931 0.969 0.710 0.501 0.971 0.623 0.750 0.675
DK 0.835 0.813 0.983 0.836 0.838 0.829 0.764 0.965 0.501 0.605 0.593
MEDK 0.999 0.983 0.998 0.991 0.971 0.749 0.812 0.963 0.739 0.735 0.746
NDK 0.786 0.711 0.956 0.920 0.778 0.731 0.857 0.908 0.531 0.530 0.530
NMEDK 0.999 0.983 0.998 0.997 0.978 0.970 0.857 0.996 0.739 0.755 0.758
RK 0.851 0.907 0.973 0.898 0.887 0.803 0.864 0.624 0.632 0.608 0.561
MERK 0.999 0.983 0.998 0.981 0.949 0.812 0.812 0.963 0.618 0.745 0.735
NRK 0.504 0.501 0.501 0.719 0.501 0.703 0.806 0.501 0.501 0.508 0.504
NMERK 0.999 0.983 0.998 0.983 0.975 0.968 0.857 0.986 0.739 0.755 0.756
MENK 0.999 0.983 0.998 0.936 0.975 0.799 0.812 0.963 0.618 0.730 0.746
NNK 0.503 0.501 0.501 0.819 0.501 0.705 0.806 0.501 0.501 0.508 0.504
NMENK 0.999 0.983 0.998 0.983 0.965 0.965 0.857 0.996 0.739 0.755 0.752
PD 0.926 0.974 0.953 0.971 0.866 0.887 0.857 0.722 0.666 0.618 0.628
MEPD 0.999 0.976 0.998 0.993 0.964 0.968 0.857 0.913 0.739 0.755 0.758
PDM 0.805 0.764 0.957 0.972 0.798 0.886 0.857 0.874 0.616 0.660 0.530
MEPDM 0.999 0.983 0.998 0.990 0.976 0.970 0.857 0.996 0.739 0.755 0.758
SR – – – 0.905 0.860 – – 0.955 – – –
MESR – – – 0.960 0.876 – – 0.963 – – –
CN 0.884 0.782 0.501 0.386 0.971 0.752 0.802 0.961 0.617 0.623 0.635
AA 0.886 0.781 0.501 0.409 0.975 0.793 0.806 0.969 0.623 0.630 0.638
HPLP+ 0.983 0.971 0.978 0.979 0.974 0.965 0.886 0.984 0.725 0.753 0.732
SRW 0.991 0.977 0.989 0.983 0.972 0.967 0.863 0.983 0.731 0.760 0.754

Table 2: Comparison of AUC value among 27 various algorithms.

O(n4). Pei, et al. [23] propose an efficient single-pair Sim-
Rank algorithm. In [38], a family of dissimilarity measures
are developed based on a biased random walk on graph,
which generalize both the commute-time and the shortest-
path distances. In [12], a unified distance function, namely
inverse P-distance, is proposed. There exists a strong con-
nection between the personalized pagerank and the inverse
P-distance. In [11], it uses graph kernels for link prediction
task. In [19], a learning framework is proposed for link pre-
diction, which generalizes several graph kernels based meth-
ods. Later, in [18], the same authors proposes a spectral
evolution model and develops a spectral extrapolation algo-
rithm for link prediction, which is based on the observation
that the large networks change over time result in a change
of a the graph’s spectrum and keeping the eigenvectors un-
changed. More recently, the supervised link prediction has
attracted much attention [25, 2]. For instance, in [25], the
authors propose a supervised method using classic classifier
such as naive Bayes, decision tree, and bagging for link pre-
diction. In [2], a supervised random walk is designed for
link prediction, which performs random walk on a weighted
graph with the weights learned by a supervised learning al-
gorithms. The supervised methods typically suffer from the
class imbalance and feature selection problems. However,
our MERW based methods are unsupervised approaches,
thus they can naturally avoid the feature selection problem.

Maximal entropy random walk on graph: The maxi-
mal entropy random walk was first proposed by Ruelle and
Bowens in [33] and it was also called Ruelle-Bowens random
walk [9]. This random walk on an unweighted graph chooses
the transition probabilities proportional to the importance
of the nodes measured by its eigenvector centrality, which is
a well known centrality measure in sociology [5]. As shown
in [31, 6, 9, 34], this process makes all paths between two
given nodes with same length have the same probabilities.

That is to say, the transition probabilities of this random
walk are chosen to maximize the entropy rate of the walk.

In [6], a maximal entropy random walk is designed on an
unweighted and undirected graph according to the dominant
eigenvector of the adjacency matrix. In [31], it shows that
there is one and only one random walk that can achieve the
maximal entropy rate. The main problem of designing max-
imal entropy random walk is that it requires to know the
dominant eigenvector of the adjacency matrix, which means
one should have global knowledge of the graph. However,
such global knowledge is unavailable. To make MERW more
practical, [34] shows that one can construct approximate
maximal entropy random walk with the degree of the nodes
on graph. The most related to our work is [9], where a cen-
trality measure, namely entropy rank, is proposed based on
the maximal entropy random walk on an unweighted and di-
rected graph. The entropy rank uses the stationary distribu-
tion of the maximal entropy random walk on an unweighted
and directed graph as the measure of centrality. As shown
in [9], the stationary distribution of MERW on a directed
graph is identical to the element-wise product of the domi-
nant left and right singular vector of the adjacency matrix.
The major drawback of this measure is that it can make
the centrality of the nodes with zero in-degree or out-degree
equal to zero. In this work, we explore the power of MERW
on undirected graphs in the context of link prediction.

Graph kernel: Graph kernel is a powerful tool. We focus
on graph kernels defined as a similarity measure between
nodes of a given graph. Kondor and Lafferty [17] first pro-
pose to construct kernel on graph. They propose an expo-
nential kernel, namely diffusion kernel, based on the heat
equation. This kernel can be naturally constructed by ma-
trix exponentiation. Smola and Kondor extend it based on
the regularization operators, which produce several regular-
ized graph kernels [35]. Recently, Fouss, et al. [10] show

1154



SM ER BA SW USAir C.ele Yeast Power NetSci GrQc HepPh HepTh

CTT 0.01 0.05 0.21 0.35 0.14 0.11 0.08 0.44 0.02 0.02 0.02
CTME 0.02 0.05 0.05 0.36 0.14 ≈0 ≈0 0.06 0.11 0.15 0.03
CK 0.71 0.74 0.58 0.06 0.20 0.02 ≈0 0.10 0.01 ≈0 0.01
MECK 0.74 0.95 0.44 0.60 0.69 0.06 ≈0 0.02 0.02 ≈0 0.03
NCK ≈0 ≈0 ≈0 0.01 0.01 ≈0 ≈0 ≈0 ≈0 0.01 ≈0
NMECK 0.70 0.95 0.79 0.53 0.90 0.01 ≈0 0.13 0.12 0.15 0.18
DK 0.22 0.21 0.94 0.14 0.24 0.55 0.1 0.53 ≈0 0.11 0.09
MEDK 0.96 0.95 0.95 0.95 0.92 0.15 0.01 0.26 0.16 0.14 0.16
NDK 0.09 0.03 0.86 0.32 0.08 0.39 0.12 0.02 0.03 0.03 0.03
NMEDK 0.96 0.95 0.95 0.96 0.93 0.92 0.12 0.94 0.21 0.22 0.24
RK 0.82 0.79 0.89 0.20 0.39 0.60 0.11 0.62 0.03 0.10 0.06
MERK 0.96 0.95 0.95 0.90 0.85 0.20 0.01 0.26 0.12 0.20 0.20
NRK ≈0 ≈0 ≈0 0.02 ≈0 0.01 0.01 ≈0 ≈0 0.01 0.004
NMERK 0.96 0.95 0.95 0.92 0.91 0.91 0.12 0.92 0.21 0.22 0.21
MENK 0.96 0.95 0.95 0.94 0.91 0.10 0.01 0.26 0.12 0.21 0.20
NNK ≈0 ≈0 ≈0 0.02 ≈0 0.01 0.01 ≈0 ≈0 0.01 ≈0
NMENK 0.96 0.95 0.95 0.95 0.91 0.91 0.12 0.94 0.21 0.22 0.21
PD 0.93 0.82 0.84 0.58 0.52 0.66 0.12 0.72 0.10 0.09 0.13
MEPD 0.96 0.94 0.95 0.95 0.89 0.91 0.12 0.91 0.21 0.22 0.24
PDM 0.10 0.06 0.85 0.37 0.20 0.58 0.12 0.27 0.12 0.16 0.03
MEPDM 0.96 0.95 0.95 0.94 0.92 0.92 0.12 0.94 0.21 0.22 0.24
SR – – – 0.21 0.14 – – 0.26 – – –
MESR – – – 0.48 0.28 – – 0.50 – – –
CN 0.24 0.04 ≈0 0.39 0.16 0.10 0.01 0.36 0.12 0.12 0.14
AA 0.25 0.04 ≈0 0.41 0.21 0.09 0.01 0.61 0.12 0.13 0.14
HPLP+ 0.92 0.86 0.88 0.81 0.71 0.81 0.21 0.73 0.18 0.22 0.20
SRW 0.95 0.87 0.87 0.82 0.70 0.83 0.20 0.75 0.18 0.24 0.21

Table 3: Comparison of link predictive precision among 27 various algorithms.

that the Moore-Penrose pseudo-inverse of the graph Lapla-
cian is a kernel, also called commute time kernel. This kernel
is wildly used as a similarities measure between nodes of a
graph [10, 37]. However, very recently, Luxburg, et al. [28]
show that the commute time distance does not consider the
structure of the graph and it will converge to a meaningless
distance measure on a graph. This results indicate that the
commute time kernel is not very well for measure the sim-
ilarity between nodes of a graph. The other graph kernel
is Neumann kernel [11], which can be expressed as infinite
series of matrix powers. The Neumann kernel is closely re-
lated to the random walk with restart, which is well known
for measure the importance of nodes on a graph. It is im-
portant to note that all the graph kernels mentioned above
are closely related to the transitional random walk on graph.
We study new graph kernels based on MERW.

7. CONCLUSION
In this paper, we propose a set of unsupervised link pre-

diction methods that incorporate the centrality of nodes
of the graph based on MERW. We first study certain im-
portant properties of MERW by constructing a new eigen-
weighted graph. Specifically, based on the eigen-weighted
graph, we give a class of new graph Laplacians, namely
maximal entropy graph Laplacians, and show that the hit-
ting and commute time of MERW can be computed using
the pseudo-inverse of the maximal entropy combinatorial
Laplacian. Then, we define four types of graph kernels and
two similarity measures on graph based on MERW for link
prediction. Finally, we compare 27 various link prediction
algorithms over 11 diverse datasets, and show our newly
proposed MERW based method (NMEDK) outperforms all
the other unsupervised approaches as well as the supervised
methods on most datasets. Future work includes generaliz-
ing the MERW based methods to directed graphs and ex-
ploring MERW for other data mining and machine learning
applications.

Appendix A
We claim some properties of pseudo-inverse of MECL as
follows: (1) L+ is a positive semidefinite matrix. (2)L+ has
rank n− 1. (3)L+ is doubly centered. Since MECL is equal
to the graph Laplacian of the corresponding eigen-weighted
graph, MECL shares the properties of the ordinary weighted
graph Laplacian. Hence, the claims hold. In addition, we
give a lemma [20] in order to prove the Theorem 3.3.

Lemma 7.1: For any irreducible matrix A ∈ Rn×n with
spectral radius ρ(A) = r, if Ai is a principal submatrix of
A obtained by removing the i-th row and column of blocks,
then matrix rI−Ai is nonsingular. 2

With the properties and Lemma 7.1, we can prove Theo-
rem 3.3. First, we reformulate Eq. (10) into a vector form
as h = e + Ph, where e is a vector with elements all one,
h is the hitting time vector, and P is the transition matrix.
Without loss of generality, we remove the n-th row of vec-
tor h and e, and remove the n-th row and n-th column of
matrix A, and denote them by h̃, ẽ, and Ã respectively.
We can obtain h̃ = ẽ + P̃h̃, where P̃ = D̃−1

v ÃD̃v/λ. Fur-

thermore, let L̃ = D̃2
v − D̃vÃD̃v/λ, we have L̃h̃ = D̃2

vẽ.

According to Lemma 7.1, L̃ is nonsingular. We thus get
h̃ = L̃+D̃2

vẽ = L̃−1D̃2
vẽ. With the same techniques used in

[10], we can efficiently solve the pseudo-inverse of L̃ (L̃+) by
computing the pseudo-inverse of L (L+). We have

h(i, n) =

n∑
j=1

(L+
ij − L+

in − L+
nj + L+

nn)v2
j

More generally, we have

h(i, k) =

n∑
j=1

(L+
ij − L+

ik − L+
kj + L+

kk)v2
j
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We can further compute the commute time as follows:

c(i, k) = h(i, k) + h(k, i) = (L+
ii + L+

kk − 2L+
ik)

n∑
j=1

v2
j

= (L+
ii + L+

kk − 2L+
ik)

Since we normalize the dominate eigenvector v, the last
equality holds.
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